Search results for " 35K05"

showing 3 items of 3 documents

Derivation of a Homogenized Two-Temperature Model from the Heat Equation

2014

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]

01 natural sciencesHomogenization (chemistry)Heat capacity010305 fluids & plasmasTwo temperatureMathematics - Analysis of PDEsThermal nonequilibrium models0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalingMSC 35K05 35B2776T05 (35Q79 76M50)35K05 35B27 76T05 (35Q79 76M50)MathematicsNumerical AnalysisHomogenizationPartial differential equationInfinite diffusion limitApplied MathematicsHeat equationMathematical analysis010101 applied mathematicsComputational MathematicsThermal non-equilibrium modelsModeling and SimulationVolume fractionHeat equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Dependence of the layer heat potentials upon support perturbations

2023

We prove that the integral operators associated with the layer heat potentials depend smoothly upon a parametrization of the support of integration. The analysis is carried out in the optimal H\"older setting.

Mathematics - Analysis of PDEsFOS: Mathematics31B10 47G10 35K05 35K20Analysis of PDEs (math.AP)
researchProduct

Time-dependent weak rate of convergence for functions of generalized bounded variation

2016

Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$

Statistics and ProbabilityApproximation using simple random walkweak rate of convergence01 natural sciencesStochastic solution41A25 65M15 (Primary) 35K05 60G50 (Secondary)010104 statistics & probabilityExponential growthFOS: Mathematics0101 mathematicsBrownian motionstokastiset prosessitMathematicsosittaisdifferentiaaliyhtälötApplied MathematicsProbability (math.PR)010102 general mathematicsMathematical analysisfinite difference approximation of the heat equationFunction (mathematics)Rate of convergenceBounded functionBounded variationnumeerinen analyysiapproksimointiStatistics Probability and UncertaintyMathematics - ProbabilityStochastic Analysis and Applications
researchProduct